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The structure of symplectic integrators up to fourth order can be completely and analytically understood
when the factorization �split� coefficients are related linearly but with a uniform nonlinear proportional factor.
The analytic form of these extended-linear symplectic integrators greatly simplified proofs of their general
properties and allowed easy construction of both forward and nonforward fourth-order algorithms with an
arbitrary number of operators. Most fourth-order forward integrators can now be derived analytically from this
extended-linear formulation without the use of symbolic algebra.
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I. INTRODUCTION

Evolution equations of the form

w�t + �� = e��T+V�w�t� , �1.1�

where T and V are noncommuting operators, are fundamental
to all fields of physics ranging from classical mechanics
�1–5�, electrodynamics �6,7�, and statistical mechanics
�8–11� to quantum mechanics �12–14�. All can be solved by
approximating e��T+V� to the �n+1�th order in the product
form

e��T+V� = �
i=1

N

eti�Tevi�V + O��n+1� �1.2�

via a well chosen set of factorization �or split� coefficients
�ti� and �vi�. The resulting algorithm is then nth order be-
cause the algorithm’s Hamiltonian is T+V+O��n�. By under-
standing this single approximation, computational problems
in diverse fields of physics can all be solved by applying the
same algorithm.

Classically, �1.2� results in a class of composed or factor-
ized symplectic integrators. While the conditions on �ti� and
�vi� for producing an nth order algorithm can be stated, these
order conditions are highly nonlinear and analytically
opaque. In many cases �14–17�, elaborate symbolic math-
ematical programs are needed to produce even fairly low
order algorithms if N is large. In this work, we show that the
structure of most fourth-order algorithms, including nearly
all known forward ��ti ,vi��0� integrators, can be understood
and derived on the basis that �vi� and �ti� are linearly related
but with a uniform nonlinear proportional factor. This class
of extended-linear integrators is sufficiently complex to be
representative of symplectic algorithms in general, but its
transparent structure makes it invaluable for constructing in-
tegrators up to the fourth-order. In this work we prove three
important theorems, on the basis of which many families of
fourth-order algorithms can be derived with analytically
known coefficients, including all known forward integrators
up to N=4.

II. THE ERROR COEFFICIENTS

The product form �1.2� has the general expansion

�
i=1

N

eti�Tevi�V = exp��eTT + �eVV + �2eTV�T,V�

+ �3eTTV�T,�T,V�� + �3eVTV�V,�T,V�� + ¯ � .

�2.1�

We have previously �18� described in detail how the error
coefficients eT, eV, eTV, eTTV, and eVTV can be determined
from �ti� and �vi�:

eT = �
i=1

N

ti, eV = �
i=1

N

vi, �2.2�

1
2 + eTV = �

i=1

N

�siui, �2.3�

1

3!
+

1

2
eTV + eTTV =

1

2�
i=1

N

�si
2ui, �2.4�

1

3!
+

1

2
eTV − eVTV =

1

2�
i=1

N

�siui
2, �2.5�

where we have defined useful variables

si = �
j=1

i

tj, ui = �
j=i

N

v j , �2.6�

with s0=0, uN+1=0, and the backward finite differences

�si
n = si

n − si−1
n , �2.7�

with property

�
i=1

N

�si
n = sN

n �=eT
n = 1� . �2.8�

We will always assume that the primary constraint eT=1 and
eV=1 are satisfied so that �2.8� sums to unity. Satisfying
these two primary constraints is sufficient to produce a first-
order algorithm. For a second-order algorithm, one must ad-
ditionally force eTV=0. For a third-order algorithm, one fur-
ther requires that eTTV=0 and eVTV=0. For a fourth-order
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algorithm, it is sufficient to satisfy the third-order constraints
with coefficients ti that are left-right symmetric. �The sym-
metry for vi will follow and need not be imposed a priori.�
Once the primary conditions eT=1 and eV=1 are imposed,
the constraints equations �2.3�–�2.5� are highly nonlinear and
difficult to decipher analytically. In this work, we will show
that �2.3� can be satisfied for all N by having �vi� linearly
related to �ti� �or vice versa�. The coefficients eTTV and eVTV

can then be evaluated simply in terms of �ti� �or �vi�� alone.
This then completely determines the structure of third- and
fourth-order algorithms.

III. THE EXTENDED-LINEAR FORMULATION

The constraint eTV=0 is satisfied if

�
i=1

N

�siui = 1
2 . �3.1�

If we view �ti� as given, this is a linear equation for �ui�.
Knowing �2.8�, a general solution for ui in terms of si and
si−1 is

ui = �
n=1

M

Cn

�si
n

�si
, with �

n=1

M

Cn = 1
2 . �3.2�

The coefficients Cn represent the intrinsic freedom in �vi� to
satisfy any constraint as expressed through its relationship to
�ti�. The expansion �3.2� is in increasing powers of si and
si−1. If we truncated the expansion at M =2, then for i�1, ui
is linearly related to �si�, i.e.,

ui = C1 + C2
�si

2

�si
= C1 + C2�si + si−1� . �3.3�

For i=1, since we must satisfy the primary constraint eV=1,
we must have

u1 = 1. �3.4�

In this case, the constraint �3.1� takes the form

�
i=1

N

�siui = t1 + C1�1 − t1� + C2�1 − t1
2� = 1

2 . �3.5�

The complication introduced by u1=1, in this, and in other
similar sums, can be avoided without any loss of generality
by decreeing

t1 = 0, �3.6�

so that �3.5� remains

C1 + C2 = 1
2 . �3.7�

For i�1�N, �3.3� implies that

vi = − C2�ti + ti+1� . �3.8�

Since v1=u1−u2=1−C1−C2t2, by virtue of �3.7�,

v1 = 1
2 + C2�1 − t2� . �3.9�

Similarly, since vN=uN=C1+C2�2− tN�, we also have

vN = 1
2 + C2�1 − tN� . �3.10�

Given �ti� such that t1=0, the set of �vi� defined by
�3.8�–�3.10� automatically satisfies eV=1 and eTV=0. If C2
were a real constant, then �vi� is linearly related to �ti�. How-
ever, in most cases C2 will be a function of �ti� and the actual
dependence is nonlinear. But the nonlinearity is restricted to
C2, which is the same for all vi. We will call this special form
of dependence of vi on �ti�, extended-linear. For a given set
of ti, �3.8�–�3.10� defines our class of extended-linear inte-
grators with one remaining parameter C2.

For extended-linear integrators as described above, one
can easily check that the sums in �2.4� and �2.5� can be
evaluated as

�
i=1

N

�si
2ui = C1 + C2 + gC2 = 1

2 + gC2, �3.11�

�
i=1

N

�siui
2 = �C1 + C2�2 + gC2

2 = 1
4 + gC2

2. �3.12�

Again the complication introduced by u1=1 is avoided by
decreeing t1=0. The quantity g is a frequently occuring sum
defined via

�
i=1

N
�si

2 �si
2

�si
= 1 + g , �3.13�

with explicit form

g = �
i=1

N

sisi−1�si − si−1� = 1
3 �1 − �g� , �3.14�

where

�g = �
i=1

N

ti
3. �3.15�

Much of the mechanics of dealing with these sums have been
worked out in Ref. �18�. However, their use and interpreta-
tion here are very different. From �2.4� and �2.5�, we have

eTTV = 1
12 + 1

2gC2, �3.16�

eVTV = 1
24 − 1

2gC2
2. �3.17�

Both are now only functions of �ti� through g.

IV. FUNDAMENTAL THEOREMS

We can now prove a number of important results:
Theorem 1. For the class of extended-linear symplectic

integrators defined by t1=0 and �3.8�–�3.10�, if �ti��0 for
i�1 such that eT=1, then eTTV�eVTV.

Proof. Setting eTTV=eVTV produces a quadratic equation
for C2,

C2
2 + C2 +

1

12g
= 0 �4.1�

whose discriminant
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D = b2 − 4ac = −
�g

1 − �g
�4.2�

is strictly negative �since if eT=1, then 1��g�0�. Hence no
real solution exists for C2. This is a fundamental theorem
about positive-coefficient factorizations. This was proved
generally in the context of symplectic corrector �or process�
algorithms by Chin �11� and by Blanes and Casas �19�. If
eTTV can never equal eVTV, then no second-order algorithm
with positive coefficients can be corrected beyond second
order with the use of a corrector.

As a corollary, for �ti�1��0, eTTV and eVTV cannot both
vanish. This is the content of the Sheng-Suzuki Theorem
�20,21�: there are no integrators of an order greater than 2 of
the form �2.1� with only positive factorization coefficients.
Our proof here is restricted to extended-linear integrators,
but can be interpreted more generally as it is done in Ref.
�18�. Blanes and Casas �19� have also given elementary
proof of this using a very weak necessary condition. Here,
for extended-linear integrators, we can be very precise in
stating how both eTTV and eVTV fail to vanish. We have, from
�3.16�, if eTTV=0, then

C2 = −
1

2�1 − �g�
, eVTV = −

1

24

�g

�1 − �g�
. �4.3�

Similarly, from �3.17�, if eVTV=0, then

C2 = −
1

2	1 − �g
, eTTV = 1

12�1 − 	1 − �g� . �4.4�

Satisfying either condition forces C2 to be a function of �ti�
through �g. From Ref. �18�, we have learned that the value
given by �4.3� is actually an upperbound for eVTV if �ti�1�
�0 and eTTV=0. Similarly, in general, the value given by
�4.4� is a lower bound for eTTV if �ti�1��0 and eVTV=0. Our
class of extended-linear integrators are all algorithms that
attain these bounds for positive ti�1. Note that in �4.4� we
have discarded the positive solution for C2 which would
have led to negative values for the vi coefficients.

For the study of forward integrators where one requires
�ti�1��0, it is useful to state �4.3� as a theorem:

Theorem 2a. For the class of extended-linear symplectic
integrators defined by

v1 = 1
2 + C2�1 − t2�, vN = 1

2 + C2�1 − tN�,

vi = − C2�ti + ti+1� , �4.5�

with t1=0, eT=1, and C2, eVTV given by

C2 = −
1

2�
, eVTV = −

1

24

 1

�
− 1� , �4.6�

where

� = 1 − �g and �g = �
i=1

N

ti
3, �4.7�

one has

�
i=1

N

eti�Tevi�V = exp���T + V� + �3eVTV�V,�T,V�� + ¯ � .

�4.8�

For t1=0, the first operator ev1�V classically updates the ve-
locity �momentum� variable. Theorem 2a completely de-
scribed the structure of these velocity-type algorithms.

If one now interchanges T↔V and �ti�↔ �vi�, then
�T , �T ,V�� transforms into �V , �T ,V�� with a sign change.
Hence, one needs to interpret eTTV in �4.4� as −eVTV, yielding
as follows:

Theorem 2b. For the class of extended-linear symplectic
integrators defined by

t1 = 1
2 + C2�1 − v2�, tN = 1

2 + C2�1 − vN�,

ti = − C2�vi + vi+1� , �4.9�

with v1=0, eV=1, and C2, eVTV given by

C2 = −
1

2��
, eVTV = − 1

12�1 − ��� , �4.10�

where

�� = 	1 − �g� and �g� = �
i=1

N

vi
3, �4.11�

one has

�
i=1

N

evi�Veti�T = exp���T + V� + �3eVTV�V,�T,V�� + ¯ � .

�4.12�

For v1=0, the first operator et1�T classically updates the po-
sition variable. Theorem 2b completely described the struc-
ture of these position-type algorithms.

In both Theorems 2a and 2b, one obtains fourth-order
forward algorithms by simply moving the commutator
�V , �T ,V�� term back to the left-hand side and distribute it
symmetrically among all the V operators �28�.

If some ti were allowed to be negative, then both eTTV and
eVTV can be zero for �g=0. For both �4.3� and �4.4� we have

C2 = − 1
2 �4.13�

and

vi = 1
2 �ti + ti+1� . �4.14�

The latter is now true even for i=1 and i=N. This is not a
coincident, from �3.16� and �3.17�, if we set C2=− 1

2 , then

eTTV = 2eVTV =
1

12
−

g

4
=

1

12
�g . �4.15�

Since C2 here is a true constant, �vi� is linearly related to �ti�.
We can formulate this explicitly as a theorem for the
negative-coefficient factorization yielding truly linear algo-
rithms:

Theorem 3. For the class of truly linear algorithms defined
by
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v1 = 1
2 t2, vN = 1

2 tN, vi = 1
2 �ti + ti+1� , �4.16�

and t1=0, one has

�
i=1

N

eti�Tevi�V = exp��eT�T + V� +
�3

24
�g�2�T,�T,V��

+ �V,�T,V��� + ¯  . �4.17�

Both commutators now vanish simultaneously if �g=0.
Theorem 3 can be proven more directly by noting that

T2�ti� = e1/2ti�Veti�Te1/2ti�V = exp�ti��T + V�

+ ti
3 �3

24
�2�T,�T,V�� + �V,�T,V��� + O��5�� ,

�4.18�

the product �i=2
N T2�ti� then reproduces �4.17�. This has been

derived by Blanes and Casas �19� in a discussion before their
Theorem 5. However, they were more interested in using
Theorem 3 above to discuss the distribution of negative co-
efficients than in deriving fourth-order algorithms. For ex-
ample, an immediate corollary of Theorem 3 is that if �g
were to vanish, then there must be at least one tk�0 such
that tk

3+ tk+1
3 �0 or tk

3+ tk−1
3 �0. Since

�x3 + y3� = �x + y�� 3
4 y2 + �x − 1

2 y�2� ,

x3+y3�0Þx+y�0. We therefore must have tk+ tk+1�0 or
tk+ tk−1�0. From �4.16�, this implies that vk or vk−1 must be
negative. Thus an algorithm of order greater than 2 of the
form �4.17� must contain at least one pair of negative coef-
ficients ti and v j. In its general context, this is the Goldman-
Kaper result �22�. Our linear formulation here, as well as
Blanes and Casas’ Theorem 5, is more precise: if ti is nega-
tive, then at least one of its adjacent vi must be negative. If
only one tk is negative, then both of its adjacent vi must be
negative. For further discussions on the distribution of nega-
tive coefficients, see Blanes and Casas �19�.

V. THE STRUCTURE OF FORWARD INTEGRATORS

Theorems 2a and 2b can be used to construct fourth-order
forward algorithms with only positive factorization coeffi-
cients. These forward integrators are the only fourth-order
factorized symplectic algorithms capable of integrating time-
irreversible equations such as the Fokker-Planck �10,23� or
the imaginary time Schrödinger equation �24–26�. Since it
has been shown that �18� currently there are no practical
ways of constructing sixth-order forward integrators, these
fourth-order algorithms enjoy a unique status.

For N=3, for a fourth-order algorithm, we must require
t2= t3= 1

2 . Theorem 2a then implies that

v1 = v3 = 1
6 , v2 = 2

3 , and eVTV = − 1
72 . �5.1�

By moving the term �3eVTV�V , �T ,V�� back to the left-hand
side of �1.2� and combining it with the central V, one recov-

ers forward algorithm 4A �27,28�. For N=4 with t2= t3= t4

= 1
3 , we have

v1 = v4 = 1
8 , v2 = v3 = 3

8 , and eVTV = − 1
192 , �5.2�

which corresponds to forward algorithm 4D �13�. These are
special cases of the general minimal �eVTV�, velocity-type al-
gorithm given by t1=0, ti=1/ �N−1�,

v1 = vN =
1

2N
, vi =

�N − 1�
N�N − 2�

, with eVTV = −
1

24

1

N�N − 2�
.

�5.3�

This arbitrary N algorithm can serve as a useful check for
any general fourth-order, velocity-type algorithm.

Alternatively, for N=4, we can allow t2 to be a free pa-
rameter so that

t4 = t2, t3 = 1 − 2t2. �5.4�

Theorem 2a then fixes C2 and eVTV with

� = 6t2�1 − t2�2 �5.5�

and

v2 = v3 =
1

12t2�1 − t2�
, v1 = v4 = 1

2 − v2. �5.6�

One recognizes that this is the one-parameter algorithm
4BDA first found in Ref. �14� using symbolic algebra. For
t2= 1

2 , one recovers the integrator 4A; for t2= 1
3 , one gets back

4D. The advantage of using a variable t2 is that one can use
it to minimize the resulting fourth-order error �oftentime to
zero� in any specific application. All the seven-stage, forward
integrators in the velocity form described by Omelyan, Mry-
glod, and Folk �OMF� �17� correspond to different ways of
choosing t2 and distributing the commutator term in 4BDA.

For N=5, again using t2 as a parameter, we have t1=0,
t5= t2, t4= t3= 1

2 − t2, �4.6� with

� = 15
16 − 3�t2 − 1

4�2, �5.7�

v5=v1, v4=v2, v3=1−2�v1+v2�, and

v1 = 1
2 + C2�1 − t2�, v2 = − 1

2C2. �5.8�

This is a new one-parameter family of fourth-order algo-
rithms with nine stages or operators.

To generate position-type algorithms, one can apply Theo-
rem 2b. For N=3, with v1=0, v1=v2= 1

2 , we have

t1 = t3 =
1

2
1 −
1
	3

�, t2 =
1
	3

, and eVTV = − 1
12�1 − 1

2
	3� .

�5.9�

This produces forward algorithm 4B �27,28� corresponding
to t2= �1−1/	3� /2 in 4BDA. Again, this is a special case of
the general fourth-order, minimal �eVTV� algorithm with v1
=0, vi=1/ �N−1�,

t1 = tN =
1

2

1 −	N − 2

N
�, ti =

1
	N�N − 2�

, �5.10�

and
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eVTV = −
1

12

1 −

	N�N − 2�
�N − 1�

� . �5.11�

For N=4, v1=0 and v2 as the free parameter, invoking Theo-
rem 2b gives

v4 = v2, v3 = 1 − 2v2, �5.12�

t2 = t3 =
1

2	6v2

, t1 = t4 = 1
2 − t2 �5.13�

and

eVTV = − 1
12�1 − �1 − v2�	6v2� . �5.14�

For v2= 1
6 and v2= 3

8 , this reproduces algorithms 4A and 4C
�28�, respectively. One again recognizes that the above is the
one-parameter algorithm 4ACB first derived in Ref. �14�, but
now with a much simpler parametrization. Algorithm 4ACB
covers all of the seven-stage, forward fourth-order position-
type integrators described by OMF �17�.

For N=5, with v2 as a free parameter, we have v1=0,
v5=v2, v4=v3= 1

2 −v2, and Theorem 2b produces another
9-stage fourth-order algorithm with

�� = 	15
16 − 3�v2 − 1

4�2. �5.15�

t5= t1, t4= t2, t3=1−2�t1+ t2�, and

t1 = 1
2 + C2�1 − v2�, t2 = − 1

2C2. �5.16�

For N�5, we have shown above that all fourth-order algo-
rithms are necessarily extended-linear. For N�5, this is not
necessarily the case. Nevertheless we find that, remarkably,
most known N=5 �9 stages� forward algorithms are very
close to being extended-linear. For velocity-type, N=5
extended-linear algorithms, v1 and v2 are functions of t2
fixed by �5.8�. In Fig. 1, we compare this predicted relation-
ship with the actual values of v1, v2, and t2 of five forward,
velocity-type, fourth-order algorithms found by OMF �17�.

These are their Eqs. �52�–�56�, and with their �, 	, and 

correspond to t2, v1, and v2, respectively. Four of their five
algorithms, with v1 in particular, are well described by �5.8�.

In Fig. 2, we compare the coefficients of all three of
OMF’s forward, position-type algorithms, Eqs. �59�–�61�,
with �5.16� which fixes t1, t2 as a function of v2. Here, their
parameters 
, �, � correspond to v2, t1, t2, respectively.
Again, t1 is particularly well predicted by �5.16�.

For 11-stage algorithms with N=6, we have two free pa-
rameters t2, t3 for velocity-type algorithms with

� = 1 − 2t2
3 − 2t3

3 − �1 − 2t2 − 2t3�3 �5.17�

and two free parameters v2 ,v3 for position-type algorithms
with

�� = 	1 − 2v2
3 − 2v3

3 − �1 − 2v2 − 2v3�3. �5.18�

Once � and �� are known, we can determine v1 and v2 in the
case of velocity-type algorithms and t1 and t2 in the case of
position-type algorithms. There is one 11-stage velocity al-
gorithm with positive coefficients found by OMF; their Eq.
�68� with ��=t2�=0.2029, ��=t3�=0.1926,

	�=v1� = 0.0667, and 
�=v2� = 0.2620. �5.19�

The last two values are to be compared with the values given
by Theorem 2a below at the same values of t2 and t3,

v1 = 0.0848, and v2 = 0.2060. �5.20�

For OMF’s 11-stage, position-type algorithm Eq. �78�, with
	�=v2�=0.1518, 
�=v3�=0.2158,

��=t1� = 0.0642, and ��=t2� = 0.1920. �5.21�

For the same values of v2 and v3, Theorem 2b gives

t1 = 0.0659, and t2 = 0.1881. �5.22�

It is remarkable that these 11-stage, fourth-order algorithms
derived by complex symbolic algebra, remained very close
to the values predicted by our extended-linear algorithms.

FIG. 1. Comparing the coefficients of five, 9-stage, velocity-
type, fourth-order forward integrators of Omelyan, Mryglod, and
Folk �17� �filled circles and squares�, with the analytical prediction
of extended-linear symplectic integrators �solid lines�.

FIG. 2. Comparing the coefficients of three, 9-stage, position-
type, fourth-order forward integrators of Omelyan, Mryglod, and
Folk �17� �filled circles and squares�, with the analytical prediction
of extended-linear symplectic integrators �solid lines�.
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VI. THE STRUCTURE OF NONFORWARD INTEGRATORS

Theorem 3 can be used to derive two distinct families of
nonforward, fourth-order algorithms. Consider first the case
of N=4. For t1=0 with symmetric coefficients t4= t2, the con-
straints

2t2 + t3 = 1, �6.1�

2t2
3 + t3

3 = 0, �6.2�

have unique solutions

t2 =
1

2 − 21/3 and t3 = −
21/3

2 − 21/3 . �6.3�

Equation �4.16� then yields

v1 = v4 =
1

2

1

2 − 21/3 , v2 = v3 = −
1

2

�21/3 − 1�
2 − 21/3 . �6.4�

One recognizes that we have just derived the well-known
fourth-order Forest-Ruth integrator �29�. Note that there is
complete symmetry between �ti� and �vi�. For position-type
algorithms, we simply interchange the values of ti and vi.

There are no symmetric solutions for N=5, for the same
reason that there are also no solutions for N=3. For N=2k,
we have the general condition

2�
i=2

k

ti + tk+1 = 1,

2�
i=2

k

ti
3 + tk+1

3 = 0, �6.5�

which can be solved by introducing real parameters �i for
i=2 to k with �2=1,

ti = �it2, �6.6�

so that

tk+1 = − 21/3
�
i=2

k

�i
3�1/3

t2, �6.7�

t2 =
1

2
�
i=2

k

�i� − 21/3
�
i=2

k

�i
3�1/3 . �6.8�

These solutions generalize the fourth-order Forest-Ruth inte-
grator to arbitrary N.

The general fourth-order condition �6.5� has been derived
previously by McLachlan �30� using the generalized triplet

construction published by Creutz and Gocksch �31�. How-
ever, the invocation of Theorem 3 is more general and much
simpler. McLachlan suggests that one should just set all �i
=1.

For N=2k+1, k�2, again introducing �6.6� for i=2 to k
with �2=1, we have

tk+1 = − 
�
i=2

k

�i
3�1/3

t2, �6.9�

t2 =
1

2
�
i=2

k

�i� − 2
�
i=2

k

�i
3�1/3 . �6.10�

This is a new class of a fourth-order algorithm possible only
for N odd greater than 5 and is not derivable from the triplet
construction.

VII. CONCLUSIONS

Most of the machinery for tracking coefficients was de-
veloped in Ref. �18� for the purpose of providing a construc-
tive proof of the Sheng-Suzuki theorem. The advantage of
this constructive approach is that we can obtain explicit
lower bounds on the second-order error coefficients. Here, by
imposing the extended-linear relationship between �ti� and
�vi�, these bounds become the actual error coefficients and
provide a complete characteriation for all fourth-order
symplectic integrators for an arbitrary number of operators.
The most satisfying aspect of this work is that most fourth-
order integrators can now be derived analytically without
recourse to symbolic algebra or numerical root finding. We
have also provided explicit construction of many new classes
of fourth-order algorithms.

For N=5,6, corresponding to 9 and 11 operators, we have
shown that many fourth-order algorithms found by Omelyan,
Mryglod, and Folk �17� are surprisingly close to the pre-
dicted coefficients of our theory, suggesting that the
extended-linear relation between coefficients may be the
dominate solution of the order condition.

The expansion �3.2� may hold similar promise for charac-
terizing sixth-order algorithms by introducing extended-
quadratic or higher order relationships between the two sets
of coefficients.
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